Telegram Group & Telegram Channel
Eliminating Meta Optimization Through Self-Referential Meta Learning [2022] - подражаем жизни в оптимизации

Мы все слышали о ДНК и генетических алгоритмах, но суровая правда в том, что жизнь сложнее. Процесс оптимизации ДНК в ходе эволюции сам по себе закодирован в нём самом, и это не просто рандомные зашумления кода. Например, какие-то части ДНК более подвержены мутированию, чем другие. Нюансов море.

То есть жизнь - это не ДНК-параметризация + алгоритм оптимизации. Это единая сущность, оптимизирующая свою выживаемость и копирование в окружающей среде. Всё остальное - это только ограничения мира, которые кислота не выбирает. Позаимствовать эту идеологию и отказаться даже от ручного алгоритма мета-оптимизации предлагают авторы данной работы.

1) Выбираем архитектуру из самомодифицирующихся матриц весов из прошлого поста. Это может быть цепочка из 3 таких, т.е. 3-х слойная нейросеть.
2) Выбираем какую-нибудь задачу для этой сети. Это может быть в принципе что угодно, допустим, RL-задача. Задаём objective модели, например, суммарная награда в задаче.
3) Поддерживаем least-recently-used пул из N экземпляров весов. Изначально там один рандомный вектор.
4) Просто сэмплируем набор весов из пула с вероятностью, пропорциональной набранной им награде. Этим набором играем в среде N шагов, и модифицированную копию кладём обратно в пул, записывая собранную награду.

Эта абсолютно безумная схема как-то работает! Но на весьма простых задачах. Её в теории можно использовать для мета-мета-обучения, мета-мета-мета-обучения, и не упираться ни в какие человеческие алгоритмы оптимизации. Отвечаю на вопрос самых внимательных - в алгоритме нет рандома, и расхождение весов в разные стороны происходит засчёт рандома задачи.

Однако, мир ещё не готов и не нуждается в таких технологиях, потому что их время придёт тогда, когда потенциал обычных мета-алгоритмов будет исчерпан. Тем не менее, в идее подражать жизни и самой её сути есть что-то очень притягательное...

@knowledge_accumulator



tg-me.com/knowledge_accumulator/87
Create:
Last Update:

Eliminating Meta Optimization Through Self-Referential Meta Learning [2022] - подражаем жизни в оптимизации

Мы все слышали о ДНК и генетических алгоритмах, но суровая правда в том, что жизнь сложнее. Процесс оптимизации ДНК в ходе эволюции сам по себе закодирован в нём самом, и это не просто рандомные зашумления кода. Например, какие-то части ДНК более подвержены мутированию, чем другие. Нюансов море.

То есть жизнь - это не ДНК-параметризация + алгоритм оптимизации. Это единая сущность, оптимизирующая свою выживаемость и копирование в окружающей среде. Всё остальное - это только ограничения мира, которые кислота не выбирает. Позаимствовать эту идеологию и отказаться даже от ручного алгоритма мета-оптимизации предлагают авторы данной работы.

1) Выбираем архитектуру из самомодифицирующихся матриц весов из прошлого поста. Это может быть цепочка из 3 таких, т.е. 3-х слойная нейросеть.
2) Выбираем какую-нибудь задачу для этой сети. Это может быть в принципе что угодно, допустим, RL-задача. Задаём objective модели, например, суммарная награда в задаче.
3) Поддерживаем least-recently-used пул из N экземпляров весов. Изначально там один рандомный вектор.
4) Просто сэмплируем набор весов из пула с вероятностью, пропорциональной набранной им награде. Этим набором играем в среде N шагов, и модифицированную копию кладём обратно в пул, записывая собранную награду.

Эта абсолютно безумная схема как-то работает! Но на весьма простых задачах. Её в теории можно использовать для мета-мета-обучения, мета-мета-мета-обучения, и не упираться ни в какие человеческие алгоритмы оптимизации. Отвечаю на вопрос самых внимательных - в алгоритме нет рандома, и расхождение весов в разные стороны происходит засчёт рандома задачи.

Однако, мир ещё не готов и не нуждается в таких технологиях, потому что их время придёт тогда, когда потенциал обычных мета-алгоритмов будет исчерпан. Тем не менее, в идее подражать жизни и самой её сути есть что-то очень притягательное...

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/87

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

How Does Bitcoin Work?

Bitcoin is built on a distributed digital record called a blockchain. As the name implies, blockchain is a linked body of data, made up of units called blocks that contain information about each and every transaction, including date and time, total value, buyer and seller, and a unique identifying code for each exchange. Entries are strung together in chronological order, creating a digital chain of blocks. “Once a block is added to the blockchain, it becomes accessible to anyone who wishes to view it, acting as a public ledger of cryptocurrency transactions,” says Stacey Harris, consultant for Pelicoin, a network of cryptocurrency ATMs. Blockchain is decentralized, which means it’s not controlled by any one organization. “It’s like a Google Doc that anyone can work on,” says Buchi Okoro, CEO and co-founder of African cryptocurrency exchange Quidax. “Nobody owns it, but anyone who has a link can contribute to it. And as different people update it, your copy also gets updated.”

A Telegram spokesman declined to comment on the bond issue or the amount of the debt the company has due. The spokesman said Telegram’s equipment and bandwidth costs are growing because it has consistently posted more than 40% year-to-year growth in users.

Knowledge Accumulator from pl


Telegram Knowledge Accumulator
FROM USA